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We present a continuum model for the propagation of cracks and fractures in brittle materials. The compo-
nents of the strain tensor« are the fundamental variables. The evolution equations are based on a free energy
that reduces to that of linear elasticity for small«, and accounts for cracks through energy saturation at large
values of«. We regularize the model by including terms dependent on gradients of« in the free energy. No
additional fields are introduced, and then the whole dynamics is perfectly defined. We show that the model is
able to reproduce basic facts in fracture physics, like the Griffith’s dependence of the critical stress as a minus
one-half power of the crack length. In addition, regularization makes the results insensitive to the numerical
mesh used, something not at all trivial in crack modeling. We present an example of the application of the
model to predict the growth and curving of cracks in a nontrivial geometrical configuration.
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I. INTRODUCTION

There are many problems in condensed matter physics
and materials science in which the aim is to describe sharp
interfaces separating regions with qualitatively different
properties. This occurs for instance in solidification, den-
dritic growth, solid-solid transformations, grain growth, etc.
Traditionally, two approaches have been followed to tackle
these problems. In one of them, the problem is solved for a
fixed position of the interface, and based on this, the ex-
pected evolution of the interface in the following time step is
calculated, and the process repeated. This method has the
practical drawback that the different structure of the interface
at each time step makes necessary the full solution of a new
problem each time. The second approach is sort of brute
force, in which the system is modeled to the atomic scale,
and evolved according to theirsNewtoniand equations of mo-
tion. The problem with this approach is that it is impossible
in practice to span the many orders of magnitude between
the atomic scale and the relevant macroscopic scale.

The diffuse interface techniquesincluding the so-called
phase field modelsd is a powerful approach to study this kind
of problemf1g. It typically describes the sharp interface by
an additional fieldf sor more than oned. For instance, in a
solidification problemf can be taken to be 0 in the liquid
and 1 in the solid. If the spatial variation off is known the
interface can be located. Then the problem of keep tracking
of the interface is eliminated against having to include alsof
as a new dynamical variable.f is coupledsusually phenom-
enologicallyd to the original degrees of freedom of the prob-
lem, and its dynamic evolution is not defineda priori, but
has to be seeded from outside.

A key ingredient in phase field models isregularizationof
the fieldf. Although the sharp interface is the sensible case,
in order to implement the theory a smooth transition off
between the values on both sides of the interface is neces-
sary. Then the interface acquires a fictitious width, which,
however, does not alter the physical behavior of the system if
it is much smaller than any other relevant length scale. An
additional, very important effect of regularization is to make
the properties of the system independent of the underlying

numerical mesh used to implement the problem on the com-
puter. Regularization is usually achieved by the inclusion in
the theory of terms that depend on gradients off, penalizing
rapid spatial variations of this quantity.

Within the field of fracture, the phase field models that
have been proposed include those of Aranson, Kalatsky, and
Vinokur f2g, Karma, Kessler, and Levinef3g, and Eastgateet
al. f4g ssee also Ref.f5gd. All of them use an additional scalar
field f as a phase field, that is taken to besasymptoticallyd 0
within fractures and 1 within the intact material.

There is now a general consensus that a complete descrip-
tion of the fracture process cannot be given only in terms of
macroscopic variables. In fact, the divergence of the stress
field near the crack tip implies that physical conditions
change a large amount on distances of the order of inter-
atomic separation. Then details of the material at the atomic
scale can have an effect on the macroscopic behavior of
cracks. On the other hand, the roughly similar phenomenol-
ogy of crack propagation observed in very different materials
raises the expectation that a general description with a mini-
mum amount of parameters dependent on microscopic char-
acteristics is feasible. This is in the spirit of the phase field
approach to fracture: one may think that the microscopic
variables have an effect that translates in the form given to
the energy density of the phase field, in the form of the terms
coupling the phase field to the elastic degrees of freedom,
and in the dynamics assumed for it. Except in this effective
way, microscopic parameters do not appear in the phase field
formalism.

The phase field approach is already giving promising re-
sults. For instance, it has been shown that crack instabilities,
oscillations, and bifurcation can be obtained within this
schemef6g. The sharp interface limit of some phase field
models of stress induced instabilities has been studied in Ref.
f7g. Its possible relevance to fracture is given in Ref.f8g.

We are going to present here a diffuse interface approach
that has some qualitative difference with previous ones. Most
importantly, it does not introduce additional variables into
the problem, the full set of variables are the components of
the strain tensor« f9g. Description of the fracture is achieved
by the nonlinear form of the effective free energy density as
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a function of«. Actually, our energy is quadratic for small
displacementssand then correctly describes linear elasticityd
and saturates for very large displacements, then describing
fracturesthe saturation energy value being related to the frac-
ture energyd. Regularization is provided by terms in the free
energy of the generic forms]«d2.

There are a number of reasons to pay attention to this
model, both conceptual and from the point of view of imple-
mentation. First of all, the absence of additional degrees of
freedom makes this model probably the simplest continuous
snonatomisticd description of the fracture process. It is then
interesting to know how, and to what extent, fracture phe-
nomenology is captured by the model.

From a practical perspective there are two important
things to point out. First, an important characteristic is the
tensorial nature of the variable describing the occurrence of
fractures. In the approaches in which a scalar fieldf is in-
troduced, knowing thatf has become zero at some point
tells that a fracture is passing through that point, but does not
tell anything about what direction the fracture follows. In our
case fracture is described by« itself, and then if we know
that a fracture is passing through some point, we can say
immediately which direction it has. We believe this is an
important computational advantage: a single cell of a com-
putational mesh is sufficient to encode the information about
existence and direction of fracture. In models using a scalar
field f we need a whole neighborhood of a computational
cell to encode the same information. Second, previous at-
tempts to model fracture through nonlinear elasticity have
used typically the displacement field as a fundamental vari-
able. For those theories regularization is a problematic issue
as it typically leads to higher order differential equations
which are difficult to solve numerically. Our equations con-
tain only second order derivatives of the strain field, and thus
they are much more smooth to solve numerically.

In this paper we concentrate mainly on the presentation
and validation of the model, giving only a short presentation
of a nontrivial application. We have divided the presentation
into the following form. In the next section we define the
model and give analytically the structure on an infinite
straight crack. Section III shows in detail that the model is
able to reproduce the Griffith’s criterion. In Sec. IV we
present an example in which the crack paths are determined
in a nontrivial geometric configuration. In Sec. V we give a
perspective of our planned future work with the model.

II. BASIC MODEL

The fundamental variables of the model are the compo-
nents of the strain tensor«:

«i j ;
1

2
S ]ui

]xj
+

]uj

]xi
D , s1d

whereuisr d are the displacements with respect to the unper-
turbed positionsf10g. Our approach follows closely that in
Ref. f11g ssee also Ref.f12gd where it was used to study
textures in ferroelastic materials and martensites. For clarity
we present the model for a two dimensional geometry, the

generalization to three dimensions being conceptually
straightforward, although of course more involved. The sym-
metric tensor«i j has three independent components. For con-
venience we will choose them in the form

e1 ; s«11 + «22d/2,

e2 ; s«11 − «22d/2, s2d

e3 ; «12 = «21,

which are named, respectively, the dilation, deviatoric, and
shear components. These three variables are, however, not
independent. In fact, since« is derived from the two dis-
placementsu1,u2, there is one constraint that has to be ful-
filled, leaving only two independent variables. The constraint
is known as the St. Venant conditionf13g, and it can be
written as

s]x
2 + ]y

2de1 − s]x
2 − ]y

2de2 − 2]x]ye3 = 0. s3d

It is easy to show that this is an identity if definitionss1d and
s2d are usedf14g.

To define the model we need to know the form of the
local free energy densityFLs«d. To correctly describe elastic-
ity for small displacements the limiting formFL

0 of FL for
small « should be

FL
0s«d = 1

2Cijkl«i j«kl, s4d

whereCijkl is the fourth rank tensor of elastic constants of the
material. We will specialize the expressions to an isotropic
material, as this was our first aim to use this kind of model.
In the isotropic caseFL

0 reads

FL
0s«d = 2Be1

2 + 2mse2
2 + e3

2d, s5d

where B and m are the two dimensional bulk and shear
modulus of the materialsrelated to the three dimensional
valuesB3D andm3D by m=m3D, B=B3D+m3D /3 for the case
of plane strain, andm=m3D, B=3B3Dm / fB3D+4m /3g for the
case of plain stressd.

The previous expression of the free energy must be ex-
tended to large strains to account for fracture. To do this the
energy must saturate for large deformation. This is the main
requirement, and different choices can be madef15g. In the
simulations presented below for isotropic materials we have
chosen the form

FLs«d =
FL

0s«d
1 + FL

0s«d/f0

. s6d

The limiting value f0 of FL for «→` is the energy density
necessary to impose locally a very large value for at least one
component of«, and it is then related to the crack energy of
the problemssee belowd. From the present free energy form,
we can say that a crack is nucleating whenFL

0, f0, i.e., when
typical values ofe’s areei ,sf0/Bd1/2 sassumingm,B, as it
is usually the cased. Cracks in the system are thus character-
ized as regions whereFL

0@ f0.
The second crucial ingredient of the model is regulariza-

tion. That is provided by gradient terms in the free energy
density. The terms we use are typically of the form
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F= ; o
i=1,2,3

ais=eid2 s7d

with numerical coefficientsai. To retain rotational invariance
we have to choosea2=a3. In certain cases, and to avoid
some unphysical behavior, these terms have to be cut off at
large values ofei ssee the next section for justification and
detailsd, and thus the gradient part of the free energy density
is chosen as

F= = o
i=1,2,3

ais=eid2sseid, s8d

wheresseid goes to 1 for smallei, and tends to zero at large
ei. The actual form ofsseid we use is

sseid =
1

1 + sFL
0/f1dk

, s9d

whereFL
0 is given in Eq.s5d, f1 is a cutoff value, and the

exponentk controls the sharpness of the cutoffssee the next
sectiond.

Once the full free energy is defined, the equations of mo-
tion are obtained by including a kinetic termT, which is
quadratic in temporal derivatives of the displacementssi.e.,
T, 1

2ru̇2, for some generic densityrd and then it has to be
transformed to a function ofei ssee Ref.f11g for the detailsd.
The equations to be solved are more conveniently written in
Fourier spaceswe useEi for the Fourier transforms ofei, and
F=FL+F=d. The result is

4r

kx
2ky

2fk2Ë1 + skx
2 − ky

2dË2g = −
dF

dE1
* − A1Ė1 + k2L,

4r

kx
2ky

2fskx
2 − ky

2dË1 + k2Ë2g = −
dF

dE2
* − A2Ė2 + sky

2 − kx
2dL,

s10d

0 = −
dF

dE3
* − A3Ė3 − 2kxkyL,

whereA1,A2,A3 are phenomenological damping coefficients
sthat we will take to be equalAi ;Ad and L is a Lagrange
multiplier depending implicitly onE’s, chosen to enforce at
every moment the St. Venant constraint, that in Fourier space
reads

skx
2 + ky

2dE1 − skx
2 − ky

2dE2 − 2kxkyE3 = 0. s11d

In the examples below, the dynamic equationss10d are
solved on a rectangular numerical mesh, using periodic
boundary conditions in systems up to sizes of 5123512. In
some cases we work with rectangular samples, with the
length perpendicular to the crack being two or three times
that along the crack, as we have observed that finite size
effects are lower in this configuration than in a square sample
with the same area. Also, the dynamic equations are solved
in the overdamped regime, in which the second order time
derivative terms in Eq.s10d are neglected.

Infinitely long, straight crack: Analytical results

As a necessary starting point, and also because it is prob-
ably the only case that can be treated analytically, we present
here the structure of an infinite, straight crack in our model.
In this geometry, all quantities depend only on the coordinate
x sthe crack is assumed to lie along they directiond, and the
model becomes effectively one dimensional. In fact, assum-
ing the boundary conditions impose no strain in they direc-
tion, we havee1sxd=e2sxd, e3=0. As expected, there is a
single order parameter in this configuration, that can be taken
to be e1. The free energy of the model restricted to the
present case becomes simply

F/Ly =E B*e1
2

1 + B*e1
2/f0

dx+ aE u = e1u2sse1ddx, s12d

where Ly is the system size along they direction, B* =2B
+2m, a=a1+a2, and the cutoff functions is now a function
of e1 alone. For the choice in Eq.s9d we get now

sse1d =
1

1 + sB*e1
2/f1dk

. s13d

It is clear that fora=0 the minimum of Eq.s12d hase1=0
except at a single pointx0. The positionx0 is undetermined.
This solution describes the system broken atx0. The fracture
energy per unit lengthg in this case is nonzero only if a finite
discretizationd is used. In this caseg= f0d.

To work out the finite regularization casesaÞ0d, it is
more convenient to solve the problem under the assumption
of an applied stresss along thex direction. To do this we
have to minimize the stress dependent free energyFs, given
by

Fs/Ly = F/Ly − 2sE e1sxddx s14d

fthe factor of 2 is due to the fact that in the present casee1

= 1
2s]ux/]xdg. Let us consider first the casef1→`, which

implies faccording to Eq.s13dg sse1d;1, i.e., no cut off of
the gradient terms at high values ofe1. As in any one dimen-
sional mechanical problem, the solution of Eqs.s12d ands14d
is reduced to the evaluation of an integral. The numerical
integration gives the profiles shown in Fig. 1. An important
observation is that now the whole profile is smooth, and this
implies that all macroscopic parameters that are numerically
calculated will be independent of the mesh discretizationd if
this is small enough.

For low s, in the region wheree1@ ;Îf0/B* the follow-
ing analytical solution is obtained:

e1sxd = e1
max−

s

2a
x2, s15d

wheree1
max is order f0/s. The sharp fracture of the casea

=0 transforms now into a smooth object that occupies a finite
width w in the system. From Eq.s15d this width can be
estimated to be

w , Îaf0s−1. s16d

Note thatw measures the width of the fracture in theorigi-
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nal, unstrained reference system. An important parameter to
be calculated is the opening of the fractureD, defined asD
;efe1sxd−e1s`dgdx. This has the meaning of the strain that
the system is able to accommodate due to the existence of
the crack. Its main contribution for lows comes from the
central part of the crack, described by Eq.s15d. We get

D , f0
3/2a1/2s−2 s17d

and from here and Eq.s16d

w , a1/4f0
−1/4D1/2. s18d

Then we see that upon increasing the openingD of the frac-
ture, the widthw increases asD1/2, and the stress decays only
as D−1/2. Then this model crack relieves the stress in the
system only asymptotically. However, the decaying of the
stress withD is too slow to give a finite crack energy. In fact,
the crack energy per unit lengthg sdefined as the energy of
the system with the crack, minus the energy of the system at
the same stress without the crackd can be estimated as

g , f0w , a1/4f0
3/4D1/2. s19d

This means that the present regularization scheme does not
provide a crack with a finite energy in the limit of large
stretching, i.e.,D→`.

In the next section we will argue that this behavior does
not invalidate completely the use of the present algorithm
with f1→` if we are interested in cracks that do not become
infinitely long. Notwithstanding, if we want a more accurate
description of cracks, an implementation in which the energy
density of the crack remains finite as its length diverges is
mandatory. The following is a possibility to obtain this.

In order to have a model that relieves more efficiently the
elastic energy, we first remind that gradient terms are neces-
sary for a fracture to propagate without interference of the
numerical mesh, therefore they are important only when
fracture is forming, namely, when typical values ofei are
close or lower than,sf0/Bd1/2. In the regions in which the

fracture has nucleated, typical values ofe’s become much
larger, and the gradient terms are not necessary any more.
Then we can weaken their effect in those regions by choos-
ing a nontrivial cutoff function as given by Eq.s9d for Eq.
s13d in the present one dimensional caseg. It should be em-
phasized that thisad hocmodification of the free energy does
not introduce new parameters in the relevant regions that
determine crack growth, namely, close to the crack tips.

Our aim is to choose a value ofk that generates cracks
with finite width and energy in the limitD→`. In order to
do this, we first notice that fore1@Îf0/B* si.e., where elastic
forces become vanishingly smalld, the Euler-Lagrange equa-
tion corresponding to Eqs.s12d–s14d leads to

a

1 + sB*e1
2

f1
dkSde1

dx
D2

+ 2se1 = const. s20d

In particular, if f1→`, we re-obtain from here the behavior
given in Eq.s15d. The constant in Eq.s20d must be calcu-
lated matching the present solution fore1@Îf0/B* , with that
for e1&Îf0/B* . Assuming f1@ f0 for simplicity, it is ob-
tained that this constant isDf0, whereD is a sorder 1d nu-
merical factor. Upon integration, Eq.s20d allows us to find
the full profile of the cracksin Fig. 2 we can see the results
of numerical integration fork=2d. We concentrate in the
cases→0, in which the crack has relaxed completely the
applied stress. The crucial result is that in this case, and for
k.1, it exists a well defined profile of the crack, given by

e1
s=0sxd =Î f1

B* g−1SÎ f0B
*D

f1a
uxuD , s21d

where the functiong is defined as

gsud =E
u

` dw
Î1 + w2k

. s22d

For x→0 the limiting form is

FIG. 1. Profiles ofe1 for the one dimensional problem, at dif-
ferent values of the global strainē1=dLx/Lx. Labels are the values
of sB* / f0d1/2ē1 used for each curve. Note thate1 does not go to zero
away from the fracture, but a remanent strain remains. This value,
however, decreases when the fracture is opened wider.

FIG. 2. Same as previous figure when the gradient terms are cut
off at large values ofe1, as explained in the text. Parameters used
are f1/ f0=100,k=2. Note that contrary to the case in the previous
figure, the fracture widthsand this implies also the fracture energyd
saturates to a finite value for largeē1.
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e1
s=0sx → 0d =Î f0

B* Ssk − 1dÎ f0B
*D

f1a
uxuD1/s1−kd

. s23d

The opening of the crackD=ee1sxddx gives a finite value
if k.2. This means that the system has completely relaxed
the applied stress with a finite opening of the crack. Any
further increaseD* of D is accommodated in the system at
the center of the crack, through a singular termD*dsxd added
to Eq. s23d. For 1,k,2, the value ofD is divergent due to
the nonintegrable divergence ofe1 around the origin in Eq.
s23d. In this case the stress is relaxed only asymptotically, but
still rapidly enoughscompared to thef1→` cased to guar-
antee a finite widthw and energyg of the fracture. In fact,
from Eq. s23d the width w of that part of the system for
which e1*Îf0/B* can be estimated to be

w ,Î f1a

f0B
* , s24d

in the same way, the energy of the crackg becomes finite,
and its value is proportional to

g , f0w ,Î f0f1a

B* . s25d

From a numerical point of view, the algorithm withk
.2 is probably too singular to be implemented successfully.
We have implemented the casek=1.5, which we have found
is numerically tractable, and provides an almost perfect veri-
fication of the Griffith’s criterion even in the quite small
system sizes that we are using.

III. FINITE STRAIGHT CRACK UNDER MODEL I
LOADING: VERIFICATION OF GRIFFITH’S LAW

One of the basic cornerstones of fracture physics, de-
scribed in the very first pages of any fracture book, is the so
called Griffith’s criterionsGCd. It states that under the appli-
cation of a remote stresss on a seffectively two dimen-
sionald system with a pre-existent crack of lengthl, the crack
will extend and eventually break the sample ifs is larger
than some critical valuescr which scales asl−1/2. A simple
justification of this behavior can be given on energetic
grounds. Upon the application of the stresss, the system
with the crack stores an elastic energy that is reduced in a
quantityEel=Cs2l2 with respect to that of the system without
the cracksC is proportional to an elastic constant of the
materiald. On the other hand, the creation of a crack of length
l is assumed to have an energy cost ofEcr=gl, where g
defines the fracture energy per unit length. The total energy
of the system as a function ofl is then given by

E = − Eel + Ecr = − Cs2l2 + gl s26d

and it has a maximum as a function ofl at lmax=g / s2Cs2d. If
l . lmax, the system relieves sufficient elastic energy upon
crack length increase to pay for the energy cost of crack
creation, and the crack typically extends abruptly and breaks
the material. Ifl , lmax there is no sufficient energy in the
system to make the crack enlarge. Note that according to Eq.

s26d, the system would prefer to reducel in order to reduce
its energy. Experimentally this “healing” of the crack is pre-
vented by irreversible processes: the crack energy is not re-
covered upon crack healing, and then the situation is that any
l , lmax is a stable crack. The previous arguments do not de-
pend on the orientation of the crack in the system, assuming
the material and the remote applied stress are isotropic. The
GC is at the base of the fracture of brittle materials, and has
to be satisfied by any model devised to describe such pro-
cess.

In our simulations we control the mean uniform strainē1.
This corresponds to an isotropic stresss=2Bē1. In order to
correctly calculate the critical stresssc for cracks of a given
length, we start from an initial spatial distribution of the
variablese1,e2,e3 that roughly describes a crack, and apply a
stabilization procedure through a negative feedback loop in
the program, that monitors the length of the crackscalculated
using the contour defined by the value of the elastic energy
FL

0=2Bd, and reducessincreasesd the applied strain when the
length increasessdecreasesd. Results in Figs. 3, 4, and 7 be-
low were obtained with this procedure.

The model with no regularization satisfies the GC if we
restrict to cracks running in a single direction with respect to
the underlying numerical mesh. This is shown in Fig. 3. We
also see that no noticeable system size effects are observed
for the system sizes used. As we use periodic boundary con-
ditions this means that the crack is not influenced by the
elastic field of its neighbor images. However, the value ofsc
is strongly dependent on the orientation of the crack as
shown in Fig. 4. This is one typical drawback of many dis-
crete models of fracture when trying to simulate isotropic
materials. Moreover, the influence of the numerical mesh has
a clearly visible manifestation: as Fig. 5 shows, if a crack is
placed at a finite angle with respect to the mesh, when the
critical stress is reached, the crack opens along one of the

FIG. 3. sColor onlined Critical remote stress for the propagation
of straight cracks of different lengthsl swith d being the lattice
discretizationd, placed along thex direction, for two different sys-
tem sizessa value ofm=0.5B is used in all numerical simulations
presentedd. Results are for the model without regularizationsa
=0d. The exponents to fit the Griffith’s lawssc, l−b, with b=1/2d
are indicated.
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lattice main directions, instead of extending along its original
direction as it should do in an isotropic system.

The gradient terms are included in the model to solve this
problem, and to make the behavior isotropic. The question of
the satisfiability of the GC in the presence of a nonzeroai is
not trivial since as we showed in the previous section, the
energy of the crack per unit length does not saturate upon
increasing strain unless an adequate cutoff of the gradient
terms is included. Let us first study the effect of a finite
regularization without cutoffff1→` in Eq. s9dg. The fact
that in this case the crack energy per unit length of an infinite
crack is divergentsas seen in the previous sectiond is a mani-
festation of the fact that the crack energy of a crack offinite
length l grows more rapidly thanl itself. On the basis of the
energetic arguments for the GC, we expect here a depen-
dence ofsc on l of the formsc, l−b with b,1/2.

Numerical simulations first of all confirm that the behav-
ior of the system can be made isotropic by including regu-
larization. In fact, Fig. 4 shows that the critical stress be-
comes independent of the angle between the crack and the
numerical mesh. More than that, the crack extends along the
original direction it had, independently of the numerical
mesh ssee Fig. 6d. However, as anticipated, a power law
decaying with an exponent lower than 1/2 is obtained for the
critical stress as a function of crack lengthssee Fig. 7d. The
fitted power for the parameters used isb=0.40270.009.
Then the model with finiteai but infinite f1 gives a slightly
incorrect behavior of critical stress as a function of crack
length. If this discrepancy can be considered small, then the
model with infinite f1 swhich is easier to implementd can be
used. If the previous discrepancy is considered serious
swhether it is serious or not will depend on the particular
problem under studyd then a finite f1 formalism has to be
implemented. As already discussed, a powerk.1 in Eq. s9d
has to be used to guarantee that the GC is satisfied. In Fig. 7
we show results indicating that a very good fitting to the GC
is obtained fork=1.5 andf1=14.6B. This value of f1 was

chosen to obtain the best verification of GC in the finite
system we are using, but in principle anysfinited value of f1
should reproduce the 1/2 power dependence in the case of
sufficiently large system sizes. Figure 8 shows the three di-
mensional profiles of the crack withl =83d, stabilized at the
critical stress.

IV. ELASTIC INTERACTIONS BETWEEN CRACKS

The prediction of crack trajectories under general loading
conditions for bodies of arbitrary shape and possibly with
pre-existent cracks is very important in many engineering
applications. The present formalism is well suited to study
these kinds of problems, in particular in those cases in which
slight deviations from straight propagation are expected.
These cases are particularly difficult to tackle with a non-
regularized model. As a very simple and illustrative example
of that, we consider a pair of parallel cracks loaded isotropi-
cally. We show here some qualitative results, leaving a more
detailed quantitative analysis for a forthcoming work. We
first stabilized the two parallel cracks by the feedback
mechanism already explained, then stop this stabilization,
and increase a small amount the stress, and follow the crack

FIG. 4. sColor onlined Critical remote stresssc for different
values of a8;a /2Bd2, normalized by the mean values,kscl
=0.2436B sfor a8=0d, kscl=0.9254B sa8=0.25d, kscl=1.0776B
sa8=0.5d, for the propagation of cracks of lengthl0=40d placed at
different angles with respect to the numerical meshs2563256d.
The strong dependence with angle in thea=0 becomes barely no-
ticeable after the inclusion of regularization.

FIG. 5. sColor onlined Effect of the numerical mesh on the
propagation of cracks in the model without regularizationsa=0d.
Snapshots of cracks of original lengthl0=16d, growing with u
=0° supper plotsd, andu=30° slower plotsd and a remote isotropic
strainē1=0.19, larger than the corresponding critical value. The left
panels are the configuration soon after the application of the load-
ing, and the right panels are those some time later. The influence of
the numerical mesh is evident. The full simulated system size is
2563256. The key to the graysgreend scale here and in all follow-
ing figures is as follows: We plot the values ofe1 from brighter
sloweste1d to darker color for a valuee1*2 scorresponding to the
crossover to cracked materiald. All values above that one are plotted
black and correspond to the region inside the crack.
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evolution as they grow. Snapshots of the system during crack
propagationsFigs. 9 and 10d show that the cracks propagate
diverging from straight propagation. This is a nontrivial ef-
fect caused by the elastic interaction between the two cracks.
Note that in the present case, cracks propagate fromboth
fractures, because of the perfect mirror symmetry of the
problem with respect to the middle plane.

In a slightly different configuration, we place the two par-
allel cracks shiftedsFig. 11d. Now the propagation of cracks
from the internal tips is strongly influenced by the nearby
crack, producing a geometrical pattern of curved cracks that

is well knownssee, for instance, Ref.f16gd. The propagation
from the external tips is now almost not influenced by the
second crack and then essentially straight.

V. SUMMARY, OUTLOOK, AND CONCLUSIONS

In summary, we have presented a model for the study of
cracks propagating in brittle materials. The model does not
use additional variables others than the strain tensor, and
then is a minimalist continuum model for description of
cracks. As a crucial ingredient it includes regularization
terms that make the cracks smoothed. We have shown that in
this form the model can describe accurately an isotropic ma-
terial in conditions in which the nonregularized model fails
neatly.

We have validated the model showing how it can accu-
rately fit the Griffith’s law for the critical stress as a function

FIG. 6. sColor onlined Same as previous figure fora=0.5Bd2,
f1→`, l0=40d, and ē1=0.56. The effect of the numerical mesh is
undetectable.

FIG. 7. sColor onlined Critical remote stress for the propagation
of straight cracks of different lengthsl, obtained including into the
model the regularization terms,a8=0.5. An exponent lower than
0.5 is obtained with infinitef1 but ab=0.5 exponent is well fitted
with a finite f1 value. System size: 1923512.

FIG. 8. The full profiles for the three variablese1,e2, ande3 of
a crack withl =83d, at the critical stresssc=0.7B, corresponding to
the encircled point in Fig. 7.

DIFFUSE INTERFACE APPROACH TO BRITTLE FRACTURE PHYSICAL REVIEW E71, 036110s2005d

036110-7



of crack length. We have seen that in order to obtain this
result the regularization has to be softened in the interior of
the cracks. Thisad hocmodification, however, leaves intact
the model in the neighborhoods of the crack tips, where the
processes responsible for crack advance take place. As a first
application we have shown how the model can predict the

propagation and eventual bending of cracks induced by elas-
tic interactions between them.

We believe that the present technique is straightforward to
implement and computationally efficient, and that it ad-
dresses in a phenomenological way the very important ap-
plied problem of predicting crack evolution, without requir-
ing as explicit input any details about the physical conditions
in the process zone. The technique can be implemented also
in three dimensions, although we feel that this should wait
for some increase in computational power before this can be
implemented on a desktop computer.

We want to indicate a few important directions along
which the model can be applied, and in which we have
started some work. First of all, all simulations in the present
paper were done in the overdamped regime, where dynami-
cal effects are absent. This may be a reasonable choice for
the cases in which the cracks are known to grow quasistati-
cally. This may include crack propagation under slowly vary-
ing external conditions, as for instance nonuniform thermal
stresses. For cases in which dynamical effects are expected
to be important the full dynamical equations have to be
implemented. Preliminary work shows that indeed the imple-
mentation of the inertial dynamics gives risesunder appro-
priate conditionsd to well known phenomena such as crack
oscillation and bifurcation. We expect to report about this
soon. Another possible interesting application of the model
concerns the determination of minimum energy configuration
of cracks. In fact, as a result of regularization, our cracks are
in principle able to shift laterally, in addition to extend from
its tips. This effect is not observed in the simulations pre-
sented here as it occurs typically in much longer time scales

FIG. 9. sColor onlined Time sequence for two parallel cracks
slength l0=60d, separation equal to 20dd loaded isotropically under
ē1=0.516 slarger than the corresponding critical valued, with a
=Bd2, f1=14.6B, k=1.5. The cracks extend with some divergence,
due to a nontrivial effect of elastic interaction between them.

FIG. 10. Time sequence in contours of the elastic energy at
FL

0=2B for the parallel cracks of the previous figuresequally spaced
eachDt=25A/B, arrows indicate increasing timed.

FIG. 11. Same as previous figure for skew-parallel cracks with
initial length l0=100d, perpendicular distance between them equal
to 50d, and horizontal distance between the outer tips equal to 200d
ssimulated system size: 3843512d. The isotropic load isē1=0.3,
corresponding to a stresss=0.6B, larger than the corresponding
critical valuesc.0.5B.
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than the one we were interested in, but it can be enhanced
under particular conditions. This shifting of cracks is driven
by the tendency of the system to minimize its energy, and
then it provides a tool to study cases in which the minimum
energy configuration has a physical meaning. An example of
this kind of application has been presented in Ref.f18g.

As a final consideration, we stress that we are describing
fracture in a continuum model of a brittle material as a non-
linear elastic process. Due to the simplicity of the model, the
influence of microscopic details at the process zone have
only very few places to leak in the present formalism. One

point where this may happen is in the form of the interpola-
tion function between linear elasticity and broken material
regime. Based on very recent findingsf17g, we expect that
particular changes in the form of this function may give rise
to different phenomenological behavior of crack propaga-
tion.
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