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Diffuse interface approach to brittle fracture
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We present a continuum model for the propagation of cracks and fractures in brittle materials. The compo-
nents of the strain tenserare the fundamental variables. The evolution equations are based on a free energy
that reduces to that of linear elasticity for smalland accounts for cracks through energy saturation at large
values ofe. We regularize the model by including terms dependent on gradientdrothe free energy. No
additional fields are introduced, and then the whole dynamics is perfectly defined. We show that the model is
able to reproduce basic facts in fracture physics, like the Griffith’s dependence of the critical stress as a minus
one-half power of the crack length. In addition, regularization makes the results insensitive to the numerical
mesh used, something not at all trivial in crack modeling. We present an example of the application of the
model to predict the growth and curving of cracks in a nontrivial geometrical configuration.
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I. INTRODUCTION numerical mesh used to implement the problem on the com-
There are many problems in condensed matter physi uter. Regularization is usually achieved by the inclusion in
and materials science in which the aim is to describe sharog‘e theory of terms that depend on gradientgsppenalizing

interfaces separating regions with qualitatively different’@Pid Spatial variations of this quantity.
b g red 9 y Within the field of fracture, the phase field models that

properties. This occurs for instance in solidification, den-h incl h ¢ latsk
dritic growth, solid-solid transformations, grain growth, etc. \/ﬁwvoekgffzq pligfrzsae?(;nscs:ﬁe;ngsl_ee\?ir[gr]ag?%nfzgst 3;?9%/, and
Traditionally, two approaches have been followed to tackle ' y ' ' o

Y bp . [4] (see also Ref5]). All of them use an additional scalar

these problems. In one of them, the problem is solved for - . )
fixed position of the interface, and based on this, the ex-'?ld.‘ﬁas a phase field, that is taken to(laeym'ptotlcallyo
within fractures and 1 within the intact material.

pected evolution of the interface in the following time step is There is now a general consensus that a complete descrip-

calcu_lated, and the process repeated. This metho.d has tHSn of the fracture process cannot be given only in terms of
practical drawback that the different structure of the 'merfac‘?nacroscopic variables. In fact, the divergence of the stress

at each time step makes necessary the full solution of a NneY|4 near the crack tip implies that physical conditions

problem each time. The second approach is sort of brutghange a large amount on distances of the order of inter-
force, in which the system is modeled to the atomic scalegiomic separation. Then details of the material at the atomic
and evolved according to theiNewtonian equations of mo-  scale can have an effect on the macroscopic behavior of
tion. The problem with this approach is that it is impossiblecracks. On the other hand, the roughly similar phenomenol-
in practice to span the many orders of magnitude betweesgy of crack propagation observed in very different materials
the atomic scale and the relevant macroscopic scale. raises the expectation that a general description with a mini-
The diffuse interface techniquéncluding the so-called mum amount of parameters dependent on microscopic char-
phase field modelss a powerful approach to study this kind acteristics is feasible. This is in the spirit of the phase field
of problem[1]. It typically describes the sharp interface by approach to fracture: one may think that the microscopic
an additional field¢ (or more than one For instance, in a variables have an effect that translates in the form given to
solidification problem¢ can be taken to be 0 in the liquid the energy density of the phase field, in the form of the terms
and 1 in the solid. If the spatial variation gfis known the  coupling the phase field to the elastic degrees of freedom,
interface can be located. Then the problem of keep trackingnd in the dynamics assumed for it. Except in this effective
of the interface is eliminated against having to include @lso way, microscopic parameters do not appear in the phase field
as a new dynamical variable. is coupled(usually phenom-  formalism.
enologically to the original degrees of freedom of the prob-  The phase field approach is already giving promising re-
lem, and its dynamic evolution is not definedpriori, but  sults. For instance, it has been shown that crack instabilities,
has to be seeded from outside. oscillations, and bifurcation can be obtained within this
Akey ingredient in phase field modelsregularizationof =~ scheme[6]. The sharp interface limit of some phase field
the field ¢. Although the sharp interface is the sensible casemodels of stress induced instabilities has been studied in Ref.
in order to implement the theory a smooth transitiongof [7]. Its possible relevance to fracture is given in H&f.
between the values on both sides of the interface is neces- We are going to present here a diffuse interface approach
sary. Then the interface acquires a fictitious width, whichthat has some qualitative difference with previous ones. Most
however, does not alter the physical behavior of the system iinportantly, it does not introduce additional variables into
it is much smaller than any other relevant length scale. Arthe problem, the full set of variables are the components of
additional, very important effect of regularization is to makethe strain tensos [9]. Description of the fracture is achieved
the properties of the system independent of the underlyingpy the nonlinear form of the effective free energy density as
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a function ofe. Actually, our energy is quadratic for small generalization to three dimensions being conceptually
displacementsand then correctly describes linear elasticity straightforward, although of course more involved. The sym-
and saturates for very large displacements, then describingetric tensoe; has three independent components. For con-
fracture(the saturation energy value being related to the fracvenience we will choose them in the form

ture energy. Regularization is provided by terms in the free
energy of the generic forrtvs)?.

There are a number of reasons to pay attention to this
model, both conceptual and from the point of view of imple-
mentation. First of all, the absence of additional degrees of
freedom makes this model probably the simplest continuous
(nonatomisti¢ description of the fracture process. It is then which are named, respectively, the dilation, deviatoric, and
interesting to know how, and to what extent, fracture pheshear components. These three variables are, however, not
nomenology is captured by the model. independent. In fact, since is derived from the two dis-

From a practical perspective there are two importanfplacementsl;,u,, there is one constraint that has to be ful-
things to point out. First, an important characteristic is thefilled, leaving only two independent variables. The constraint

tensorial nature of the variable describing the occurrence o known as the St. Venant conditidi3], and it can be
fractures. In the approaches in which a scalar figlés in-  written as

troduced, knowing thatp has become zero at some point ) )

tells that a fracture is passing through that point, but does not (6% + d)er = (& - d)e, ~ 23,dy83= 0. (3)

tell anything about what direction the fracture follows. In our |t jg easy to show that this is an identity if definitiofl and
case fracture is described byitself, and then if we know (2 gre used14].

that a fracture is passing through some point, we can say Tq define the model we need to know the form of the
immediately which direction it has. We believe this is an|gcg| free energy densitfy, (¢). To correctly describe elastic-

important computational advantage: a single cell of a comyy, for small displacements the limiting for®? of F, for
putational mesh is sufficient to encode the information aboug4)1 = should be

existence and direction of fracture. In models using a scalar o .

field ¢ we need a whole neighborhood of a computational FL(e) = 5Cijuijen, (4)
cell to encode the same information. Second, previous a&/_vherecijk, is the fourth rank tensor of elastic constants of the

tempts to model fracture through nonlinear elasticity have ! : L ; : .
material. We will specialize the expressions to an isotropic

used typically the displacement field as a fundamental vari aterial, as this was our first aim to use this kind of model
able. For those theories regularization is a problematic issu o . 0 ’
n the isotropic casé&| reads

as it typically leads to higher order differential equations
which are difficult to solve numerically. Our equations con- FO(e) = 2BE + 2u(e5 + €3), (5)

tain only second order derivatives of the strain field, and thus ) )
they are much more smooth to solve numerically. where B and u are the two dimensional bulk and shear

In this paper we concentrate mainly on the presentatioﬁnOdUIUS of the materialrelated to the three dimensional

3D 3D —,,3D —R3D 3D
and validation of the model, giving only a short presentation’@/UesB™" and u== by u=w"", B=B*"+n""/3 for the case

of a nontrivial application. We have divided the presentation® Plane strain, angu=u°, B=38%1/[B* +4./3] for the

into the following form. In the next section we define the Case of plain stregs _

model and give analytically the structure on an infinite 1N€ Previous expression of the free energy must be ex-
straight crack. Section Il shows in detail that the model istended to large strains to account for fracture. To do this the
able to reproduce the Griffith’s criterion. In Sec. IV we €nergy must saturate for Iarge_deformaﬂon. This is the main
present an example in which the crack paths are determindgduirement, and different choices can be metig. In the

in a nontrivial geometric configuration. In Sec. V we give a Simulations presented below for isotropic materials we have

perspective of our planned future work with the model. ~ chosen the form

e = (e11+ €212,
&= (11~ €212, (2

€3=€12= €1,

Fo(e)

Fle)=——-——.
L(e) 1+F%e)/f,

(6)
Il. BASIC MODEL
The fundamental variables of the model are the compo:rhe limiting yaluefo of F, for e~ is the energy density
: necessary to impose locally a very large value for at least one
nents of the strain tenser L
component ok, and it is then related to the crack energy of
1/ou  ou the problem(see below From the present free energy form,
g == i (1) . . .
=5 , we can say that a crack is nucleating wh‘r‘@nv fo, €., when
typical values ofe’'s aree ~ (fo/B)Y? (assumingu~ B, as it
whereu;(r) are the displacements with respect to the unperis usually the cage Cracks in the system are thus character-
turbed positiong10]. Our approach follows closely that in ized as regions wherg}> f,.
Ref. [11] (see also Ref[12]) where it was used to study The second crucial ingredient of the model is regulariza-
textures in ferroelastic materials and martensites. For clarityion. That is provided by gradient terms in the free energy

we present the model for a two dimensional geometry, thelensity. The terms we use are typically of the form

L;'Xj &Xi
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Fy= 2 ai(Ve,)z ) Infinitely long, straight crack: Analytical results

i=1,2,3 As a necessary starting point, and also because it is prob-
. ) o . ) . . ably the only case that can be treated analytically, we present
with numerical coefficients;. To retain rotational invariance here the structure of an infinite, straight crack in our model.
we have to choose,=as3. In certain cases, and to avoid | this geometry, all quantities depend only on the coordinate
some unphysical behavior, these terms have to be cut off & (the crack is assumed to lie along thelirection, and the
large values of; (see the next section for justification and yodel becomes effectively one dimensional. In fact, assum-
detailg, and thus the gradient part of the free energy densityng the boundary conditions impose no strain in yheirec-

is chosen as tion, we havee,(x)=e,(x), e3=0. As expected, there is a
5 single order parameter in this configuration, that can be taken
Fv= > a(Ve)s(e), (8)  to bee,. The free energy of the model restricted to the
i=1.2.3 present case becomes simply

wheres(e) goes to 1 for smalg;, and tends to zero at large _ B*ei 5

e. The actual form of(e) we use is FiLy= 1 +B*e§/fodx+ a | [Velse)dx, (12)
1 wherel, is the system size along the direction, B'=2B

s(e) = T+ FE ) (9 +2u, @=ay+ay, and the cutoff functiors is now a function

L of e; alone. For the choice in E49) we get now

whereF? is given in Eq.(5), f, is a cutoff value, and the 1

exponentk controls the sharpness of the cuttgee the next s(e) = T+ @) (13

1Ty

section).
Once the full free energy is defined, the equations of motit is clear that fora=0 the minimum of Eq(12) hase;=0

tion are obtained by including a kinetic terify which is  except at a single poing. The positionx, is undetermined.

quadratic in temporal derivatives of the displaceménts,  This solution describes the system brokexafThe fracture

T~ gpu% for some generic density) and then it has to be energy per unit lengtly in this case is nonzero only if a finite

transformed to a function af (see Ref[11] for the details.  discretizations is used. In this casg="fé.

The equations to be solved are more conveniently written in  To work out the finite regularization cage# 0), it is

Fourier spacéwe usek; for the Fourier transforms &, and  more convenient to solve the problem under the assumption

F=F_+Fy). The result is of an applied stress along thex direction. To do this we
have to minimize the stress dependent free enErgygiven
4p o o 2 e q__ OF - 2 by
p[k E1+(kx‘ky)Ez]—‘E‘A1E1+k A,
1
" FIL,=FIL, - 20 f e (x)dx (14)
ﬁ[(k2—2E+k2E]——£—AE+ 2_ KA [the factor of 2 is due to the fact that in th t
22k K))Eq 2= AR (k= K)A, le actor of 2 is due to the fact that in the present aase
X7y 2 =35(du/ox)]. Let us consider first the casig— , which
(10) implies [according to Eq(13)] s(e;) =1, i.e., no cut off of
0= _f* _ A3E3— 2k kA, the gradient terms at high values&f As in any one dimen-
3 - sional mechanical problem, the solution of E(<?) and(14)

is reduced to the evaluation of an integral. The numerical
whereA;,A,,A; are phenomenological damping coefficientsintegration gives the profiles shown in Fig. 1. An important
(that we will take to be equah=A) and A is a Lagrange observation is that now the whole profile is smooth, and this
multiplier depending implicitly orE’s, chosen to enforce at implies that all macroscopic parameters that are numerically
every moment the St. Venant constraint, that in Fourier spacealculated will be independent of the mesh discretizafidn

reads this is small enough.
) s ) s For low o, in the region where, > = \f,/B" the follow-
(kK + K Eq — (K — KB — 2Kk E3 = 0. (11)  ing analytical solution is obtained:
In the examples below, the dynamic equatiqh) are max )
solved on a rectangular numerical mesh, using periodic ex) =€ - 20 (15

boundary conditions in systems up to sizes of 8B12. In

some cases we work with rectangular samples, with thavheree"™* is orderfy/o. The sharp fracture of the case
length perpendicular to the crack being two or three times=0 transforms now into a smooth object that occupies a finite
that along the crack, as we have observed that finite sizeidth w in the system. From Eq5) this width can be
effects are lower in this configuration than in a square sampléstimated to be
with the same area. Also, the dynamic equations are solved W \af ol (16)
in the overdamped regime, in which the second order time vatoo

derivative terms in Eq(10) are neglected. Note thatw measures the width of the fracture in tbagi-
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FIG. 1. Profiles ofe; for the one dimensional problem, at dif- ~ FIG. 2. Same as previous figure when the gradient terms are cut

ferent values of the global stra@=4L,/L,. Labels are the values Off at large values o, as explained in the text. Parameters used
of (B*/fo)Y/%e; used for each curve. Note thatdoes not go to zero  aref;/fo=100, x=2. Note that contrary to the case in the previous
away from the fracture, but a remanent strain remains. This valudigure, the fracture widtiand this implies also the fracture energy
however, decreases when the fracture is opened wider. saturates to a finite value for largg.

nal, unstrained reference system. An important parameter tffacture has nucleated, typical values &8 become much

be calculated is the opening of the fracturedefined ast  larger, and the gradient terms are not necessary any more.
= [[e,(x)—e,()]dx. This has the meaning of the strain that Then we can weaken their_effect in_ those regions by choos-
the system is able to accommodate due to the existence 819 & nontrivial cutoff function as given by E¢9) [or Eq.

the crack. Its main contribution for lows comes from the (13) in the present one dimensional casié should be em-

central part of the crack, described by Ef5). We get phasized that thiad hocmodification of the free energy does
32 12 o not introduce new parameters in the relevant regions that
A~fyao (17)  determine crack growth, namely, close to the crack tips.
Our aim is to choose a value @&f that generates cracks
and from here and Ed16) with finite width and energy in the limif\ —oc. In order to
W~ a4 A2, (18)  do this, we first notice that fag; > \f,/B" (i.e., where elastic

forces become vanishingly smilthe Euler-Lagrange equa-

Then we see that upon increasing the openingf the frac- tion corresponding to Eq12)—(14) leads to

ture, the widthw increases ad'?, and the stress decays only

as A™Y2 Then this model crack relieves the stress in the @ de; \?
system only asymptotically. However, the decaying of the mE\ <\ dx +20€, = const. (20)
stress withA is too slow to give a finite crack energy. In fact, 1+ (T)

the crack energy per unit length (defined as the energy of
the system with the crack, minus the energy of the system
the same stress without the cradan be estimated as

In particular, if f;— o0, we re-obtain from here the behavior
iven in Eq.(15). The constant in Eq(20) must be calcu-
lated matching the present solution > \f,/B", with that
y~ fow ~ a4fAAY2, (19) for e;=<\fy/B". Assumingf,>f, for simplicity, it is ob-
. L tained that this constant Bf,, whereD is a (order 1 nu-
This means that the present regularization scheme does Noferica) factor. Upon integration, EGR0) allows us to find
provide a crack with a finite energy in the limit of large {he fu|l profile of the crackin Fig. 2 we can see the results

stretching, i.e.A—oe. , _ _ of numerical integration fork=2). We concentrate in the
In the next section we will argue that this behavior does.,se— 0 in which the crack has relaxed completely the

not invalidate completely the use of the present algorithm,;hjiaq stress. The crucial result is that in this case, and for
with f;— oo if we are interested in cracks that do not becomeK>l, it exists a well defined profile of the crack, given by

infinitely long. Notwithstanding, if we want a more accurate

description of cracks, an implementation in which the energy 0 fi foB'D
density of the crack remains finite as its length diverges is ey (x) = 59 ﬁ|x| , (21)
mandatory. The following is a possibility to obtain this. !

In order to have a model that relieves more efficiently thewhere the functiorg is defined as
elastic energy, we first remind that gradient terms are neces-
sary for a fracture to propagate without interference of the ()= Y dw (22)
numerical mesh, therefore they are important only when 9= o V1w

fracture is forming, namely, when typical values &fare
close or lower than~(fy/B)Y2. In the regions in which the Forx— 0 the limiting form is
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[1 f8'D, |\ [ '
ey (x—0) = B—?((K—l) —‘}la |x|> . (29

The opening of the crack =/¢e;(x)dx gives a finite value
if k>2. This means that the system has completely relaxec’
the applied stress with a finite opening of the crack. Any 4
further increase\” of A is accommodated in the system at
the center of the crack, through a singular teXid(x) added
to Eq.(293). For 1< k<2, the value ofA is divergent due to 3,
the nonintegrable divergence ef around the origin in Eq. g | © 192x512, B = 0.478 ¥ 0.015
(23). In this case the stress is relaxed only asymptotically, but
still rapidly enough(compared to thé,;— o case to guar-

ts ]
—
=
T

uni

o- 0O & - - i

[ arb

¥ 96x256, B = 0.498 F 0.011

c

antee a finite widttw and energyy of the fracture. In fact, 0.1 L
from Eg. (23) the width w of that part of the system for 10 5 100
which e; = \f,/B" can be estimated to be 4
\/f? FIG. 3. (Color onling Critical remote stress for the propagation
w ~ -, (24) of straight cracks of different lengths(with & being the lattice
foB discretization, placed along the direction, for two different sys-
in the same way, the energy of the craglbecomes finite, tem sizega value ofx=0.5 is used in all numerical simulations
and its value is proportional to presentefd Results are for the model without regularizatiGam
=0). The exponents to fit the Griffith’s law~ 172, with 8=1/2)
are indicated.
5~ foW ~ f°;}“. (25)

From a numerical point of view, the algorithm witk  (26), the system would prefer to redutén order to reduce
>2 is probably too singular to be implemented successfullyits energy. Experimentally this “healing” of the crack is pre-
We have implemented the cage 1.5, which we have found vented by irreversible processes: the crack energy is not re-
is numerically tractable, and provides an almost perfect vericovered upon crack healing, and then the situation is that any
fication of the Griffith’s criterion even in the quite small | <lyis a stable crack. The previous arguments do not de-
system sizes that we are using. pend on the orientation of the crack in the system, assuming

the material and the remote applied stress are isotropic. The
GC is at the base of the fracture of brittle materials, and has
IIl. FINITE STRAIGHT CRACK UNDER MODEL | to be satisfied by any model devised to describe such pro-
LOADING: VERIFICATION OF GRIFFITH'S LAW cess. o
In our simulations we control the mean uniform strajn

One of the basic cornerstones of fracture physics, dethis corresponds to an isotropic stress2Be;. In order to
scribed in the very first pages of any fracture book, is the s@orrectly calculate the critical stress for cracks of a given
called Griffith’s criterion(GC). It states that under the appli- |ength, we start from an initial spatial distribution of the
cation of a remote stress on a (effectively two dimen-  yariablese, ,e,,e; that roughly describes a crack, and apply a
siona) system with a pre-existent crack of lengtlthe crack  stapilization procedure through a negative feedback loop in
will extend and eventually break the sampleoifis larger  the program, that monitors the length of the créziculated
than some critical value, which scales as™"/% A simple  ysing the contour defined by the value of the elastic energy
justification of this behz_ivio_r can be given on energeticFE:ZB), and reducegincreasesthe applied strain when the
grounds. Upon the application of the strassthe system |ength increase&decreases Results in Figs. 3, 4, and 7 be-
with the crack stores an elastic energy that is reduced in gyw were obtained with this procedure.
quantityEe=Co?l? with respect to that of the system without  The model with no regularization satisfies the GC if we
the crack(C is proportional to an elastic constant of the restrict to cracks running in a single direction with respect to
materia). On the other hand, the creation of a crack of lengthihe underlying numerical mesh. This is shown in Fig. 3. We
| is assumed to have an energy costEQf=9l, wherey 3|50 see that no noticeable system size effects are observed
defines the fracture energy per unit length. The total energyor the system sizes used. As we use periodic boundary con-
of the system as a function bfis then given by ditions this means that the crack is not influenced by the

E=-Ey+E,=-Co?2+l (26) glastic field of its neighbor images: However, the valuerof

is strongly dependent on the orientation of the crack as
and it has a maximum as a functionlddt|,,,,=y/(2Ca?). If ~ shown in Fig. 4. This is one typical drawback of many dis-
>0 the system relieves sufficient elastic energy uporcrete models of fracture when trying to simulate isotropic
crack length increase to pay for the energy cost of cracknaterials. Moreover, the influence of the numerical mesh has
creation, and the crack typically extends abruptly and breaka clearly visible manifestation: as Fig. 5 shows, if a crack is
the material. Ifl <l there is no sufficient energy in the placed at a finite angle with respect to the mesh, when the
system to make the crack enlarge. Note that according to Egritical stress is reached, the crack opens along one of the
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1.30F
1.20F

1.10F

LNACH]

1.00

0.90§

0.80F

6[deg]

FIG. 4. (Color onling Critical remote stressr. for different
values of o’ =a/2B&% normalized by the mean valuegg,)
=0.2438 (for a’=0), (0)=0.9258 (a’'=0.25, (0=1.0778
(a’=0.5), for the propagation of cracks of lengi§r 405 placed at
different angles with respect to the numerical mé&B6x 256).
The strong dependence with angle in #tie0 becomes barely no-
ticeable after the inclusion of regularization. 1156

1156

o——9°

Iattice main Qirections, in;tead Qf extending along its original FIG. 5. (Color onlind Effect of the numerical mesh on the
direction as it should do in an isotropic system. _propagation of cracks in the model without regularizatiars0).

The gradient terms are Includ_ed in the model to SO'V?‘ thI%napshots of cracks of original length=166, growing with 6
probler_n, _an(_j_to make the l_Jehawor isotropic. The question of 5. (upper plots, and 6=30° (lower plot§ and a remote isotropic
the satisfiability of the GC in the presence of a nONz&r® gy aine; =0.19, larger than the corresponding critical value. The left
not trivial since as we showed in the previous section, thg,aneisare the configuration soon after the application of the load-
energy of the crack per unit length does not saturate UPOfkg, and the right panels are those some time later. The influence of
increasing strain unless an adequate cutoff of the gradieffe numerical mesh is evident. The full simulated system size is
terms is included. Let us first study the effect of a finite 256x 256. The key to the graggreen scale here and in all follow-
regularization without cutofff; —o in Eq. (9)]. The fact ing figures is as follows: We plot the values ef from brighter
that in this case the crack energy per unit length of an infinitgloweste;) to darker color for a value; =2 (corresponding to the
crack is divergentas seen in the previous sectios a mani-  crossover to cracked matepiahll values above that one are plotted
festation of the fact that the crack energy of a crackimife ~ black and correspond to the region inside the crack.
lengthl grows more rapidly thahitself. On the basis of the

energetic arguments for the GCE,BW? expect here a depeihosen to obtain the best verification of GC in the finite

dence ofo; on| of the form o~ 17" with B<1/2. system we are using, but in principle affinite) value off,
Numerical simulations first of all confirm that the behav- gouIq reproduce the 1/2 power dependence in the case of

ior of the system can be made isotropic by including regusyfficiently large system sizes. Figure 8 shows the three di-

|arizati0-n. In faCt, F|g 4 ShOWS that the Cl’itica| stress be'mensiona| prof”es of the crack Wllh:835, stabilized at the
comes independent of the angle between the crack and th®itical stress.

numerical mesh. More than that, the crack extends along the
original direction it had, independently of the numerical
mesh (see Fig. 6. However, as anticipated, a power law
decaying with an exponent lower than 1/2 is obtained for the The prediction of crack trajectories under general loading
critical stress as a function of crack lend8ee Fig. 7. The  conditions for bodies of arbitrary shape and possibly with
fitted power for the parameters used 50.402+0.009. pre-existent cracks is very important in many engineering
Then the model with finitey; but infinite f; gives a slightly — applications. The present formalism is well suited to study
incorrect behavior of critical stress as a function of crackthese kinds of problems, in particular in those cases in which
length. If this discrepancy can be considered small, then thslight deviations from straight propagation are expected.
model with infinitef; (which is easier to implementan be These cases are particularly difficult to tackle with a non-
used. If the previous discrepancy is considered seriousegularized model. As a very simple and illustrative example
(whether it is serious or not will depend on the particularof that, we consider a pair of parallel cracks loaded isotropi-
problem under studythen a finitef; formalism has to be cally. We show here some qualitative results, leaving a more
implemented. As already discussed, a powerl in Eq.(9) detailed quantitative analysis for a forthcoming work. We
has to be used to guarantee that the GC is satisfied. In Fig.fi#st stabilized the two parallel cracks by the feedback
we show results indicating that a very good fitting to the GCmechanism already explained, then stop this stabilization,
is obtained fork=1.5 andf;=14.8. This value off; was and increase a small amount the stress, and follow the crack

IV. ELASTIC INTERACTIONS BETWEEN CRACKS
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FIG. 6. (Color onling Same as previous figure far=0.586?,
f;— o, 1,=408, ande;=0.56. The effect of the numerical mesh is
undetectable.

evolution as they grow. Snapshots of the system during crack
propagation(Figs. 9 and 1Pshow that the cracks propagate
diverging from straight propagation. This is a nontrivial ef-
fect caused by the elastic interaction between the two cracks.
Note that in the present case, cracks propagate footh
fractures, because of the perfect mirror symmetry of the
problem with respect to the middle plane.

In a slightly different configuration, we place the two par-
allel cracks shiftedFig. 11). Now the propagation of cracks
from the internal tips is strongly influenced by the nearby
crack, producing a geometrical pattern of curved cracks that

10[ ' ' 7

F E ac

O
;————52————%—%%%%—ié@ii—%%—x——%——; fro

L © B = 0.402 ¥ 0.009, f, » oo

o, 1% [ arb. units ]

X @ = 0.504 ¥ 0.0025, f,= 14.6B

PHYSICAL REVIEW HElL, 036110(20095

FIG. 8. The full profiles for the three variableg,e,, ande; of
rack withl =834, at the critical strese.=0.7B, corresponding to

- o= 05 - the encircled point in Fig. 7.

r o O is well known(see, for instance, Reff16]). The propagation

m the external tips is now almost not influenced by the

second crack and then essentially straight.

V. SUMMARY, OUTLOOK, AND CONCLUSIONS
In summary, we have presented a model for the study of

cracks propagating in brittle materials. The model does not
‘ use additional variables others than the strain tensor, and
100 then is a minimalist continuum model for description of

/5 cracks. As a crucial ingredient it includes regularization

ter

ms that make the cracks smoothed. We have shown that in

FIG. 7. (Color online Critical remote stress for the propagation this form the model can describe accurately an isotropic ma-

of straight cracks of different lengthsobtained including into the ter

ial in conditions in which the nonregularized model fails

model the regularization terms;’=0.5. An exponent lower than neatly.

0.5 is obtained with infinitd; but a8=0.5 exponent is well fitted

We have validated the model showing how it can accu-

with a finite f; value. System size: 192512. rately fit the Griffith’s law for the critical stress as a function

036110-7
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FIG. 9. (Color online Time sequence for two parallel cracks FIG. 11. Same as previous figure for skew-parallel cracks with

(lengthly=605, separation equal to 2Dloaded isotropically under initial length 15=1005, perpendicular distance between them equal
©,=0.516 (larger than the corresponding critical valusvith « to 505, and horizontal distance between the outer tips equal té 200

=B&?, ,=14.68, k=1.5. The cracks extend with some divergence, (Simulated system size: 384512). The isotropic load i®;=03,
due to a nontrivial effect of elastic interaction between them. ~ corresponding to a stress=0.68, larger than the corresponding
critical valueo,=0.5B.

of crack length. We have seen that in order to obtain this i d tual bendi f ks induced by el
result the regularization has to be softened in the interior OFropaga lon and eventual bending of cracks induced by elas-

the cracks. Thiad hocmodification, however, leaves intact Ic mterac_tlons between them. . . :
the model in the neighborhoods of the crack tips, where the We believe that the present techm_qge IS stra|ghtforv_vard to
processes responsible for crack advance take place. As a fi plement and computationally efficient, and that it ad-

application we have shown how the model can predict th resses in a phenomenological way the very important ap-
plied problem of predicting crack evolution, without requir-

ing as explicit input any details about the physical conditions
in the process zone. The technique can be implemented also
in three dimensions, although we feel that this should wait
for some increase in computational power before this can be
implemented on a desktop computer.

We want to indicate a few important directions along

A 7 which the model can be applied, and in which we have
started some work. First of all, all simulations in the present
w paper were done in the overdamped regime, where dynami-
cal effects are absent. This may be a reasonable choice for

2006

the cases in which the cracks are known to grow quasistati-
M cally. This may include crack propagation under slowly vary-

ing external conditions, as for instance nonuniform thermal
A/ \A stresses. For cases in which dynamical effects are expected
to be important the full dynamical equations have to be
implemented. Preliminary work shows that indeed the imple-
mentation of the inertial dynamics gives ri@ender appro-
priate conditionsto well known phenomena such as crack
oscillation and bifurcation. We expect to report about this
soon. Another possible interesting application of the model
concerns the determination of minimum energy configuration
of cracks. In fact, as a result of regularization, our cracks are

FIG. 10. Time sequence in contours of the elastic energy atn principle able to shift laterally, in addition to extend from

F2=2B for the parallel cracks of the previous figuegually spaced its tips. This effect is not observed in the simulations pre-
eachAt=25A/B, arrows indicate increasing time sented here as it occurs typically in much longer time scales

2006
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than the one we were interested in, but it can be enhanceabint where this may happen is in the form of the interpola-
under particular conditions. This shifting of cracks is drivention function between linear elasticity and broken material
by the tendency of the system to minimize its energy, andegime. Based on very recent findingk7], we expect that
then it provides a tool to study cases in which the minimumparticular changes in the form of this function may give rise
energy configuration has a physical meaning. An example dfo different phenomenological behavior of crack propaga-
this kind of application has been presented in R&8]. tion.

As a final consideration, we stress that we are describing
fracture in a continuum model of a brittle material as a non-
linear elastic process. Due to the simplicity of the model, the
influence of microscopic details at the process zone have We thank S. R. Shenoy for useful comments and discus-
only very few places to leak in the present formalism. Onesions.
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